Плазменная металлизация. Сварка алюминия плазмой — особенности технологии, режимы, оборудование Плазменное напыление покрытий повышающие твердость

Плазменное напыление (или, другими словами – диффузионная металлизация) эффективный способ изменения физико-механических свойств, а также структуры основной поверхности. Поэтому он часто используется с декоративными целями, и для увеличения стойкости конечного продукта.

Принцип плазменного напыления

Как и традиционные методы поверхностных покрытий, при диффузионной металлизации происходит осаждение на поверхности металла слоя другого металла или сплава, который обладает необходимыми для последующего применения детали свойствами – нужным цветом, антикоррозионной стойкостью, твёрдостью. Отличия заключаются в следующем:

  1. Высокотемпературная (5000 — 6000 °С) плазма значительно ускоряет процесс нанесения покрытий, который может составлять доли секунд.
  2. При диффузионной металлизации в струе плазмы в поверхностные слои металла могут диффундировать также химические элементы из газа, где проводится обработка. Таким образом, регулируя химический состав газа, можно добиваться комбинированного поверхностного насыщения металла атомами нужных элементов.
  3. Равномерность температуры и давления внутри плазменной струи обеспечивает высокое качество конечных покрытий, чего весьма трудно достичь при традиционных способах металлизации.
  4. Плазменное напыление отличается чрезвычайно малой длительностью процесса. В результате не только повышается производительность, но также исключается перегрев, окисление, прочие нежелательные поверхностные явления.

Рабочие установки для реализации процесса

Поскольку чаще всего для инициации высокотемпературной плазмы используется электрический разряд – дуговой, искровой или импульсный – то применяемое для такого способа напыления оборудование включает:

  • Источник создания разряда: высокочастотный генератор, либо сварочный преобразователь;
  • Рабочую герметизированную камеру, где размещается подвергаемая металлизации заготовка;
  • Резервуар для газа, в атмосфере которого будет производиться формирование высокотемпературной плазмы;
  • Насосной или вакуумной установки, обеспечивающей необходимое давление для прокачки рабочей среды или для создания требуемого разрежения;
  • Системы управления за ходом протекания процесса.

Работа плазмотрона, выполняющего плазменное напыление, происходит так. В герметизированной камере закрепляется напыляемая деталь, после чего между поверхностями рабочего электрода (в состав которого входят напыляемые элементы) и заготовкой возбуждается электрический разряд. Одновременно через рабочую зону с требуемым давлением прокачивается жидкая или газообразная среда. Её назначение – сжать зону разряда, повысив тем самым объёмную плотность его тепловой мощности. Высококонцентрированная плазма обеспечивает размерное испарение металла электрода и одновременно инициирует пиролиз окружающей заготовку среды. В результате на поверхности образуется слой нужного химического состава. Изменяя характеристики разряда – ток, напряжение, давление – можно управлять толщиной, а также структурой напыляемого покрытия.

Аналогично происходит и процесс диффузионной металлизации в вакууме, за исключением того, что сжатие плазмы происходит вследствие разницы давлений внутри и вне её столба.

Технологическая оснастка, расходные материалы

Выбор материала электродов зависит от назначения напыления и вида обрабатываемого металла. Например, для упрочнения штампов наиболее эффективны электроды из железо-никелевых сплавов, которые дополнительно легируются такими элементами, как хром, бор, кремний. Хром повышает износостойкость покрытия, бор – твёрдость, а кремний – плотность финишного покрытия.

При металлизации с декоративными целями, главным критерием выбора металла рабочего электрода является конфигурация напыляемой поверхности, а также её внешний вид. Напыление медью, например, производят электродами из электротехнической меди М1.

Важной структурной составляющей процесса является состав среды. Например, при необходимости получить в напыляемом слое высокостойкие нитриды и карбиды, в газе должны присутствовать органические среды, содержащие углерод или азот.

Последующая обработка готового покрытия

В силу особенностей процесса плотность напылённого слоя и прочность его сцепления с основным металлом не всегда бывают достаточными для обеспечения долговечности покрытия. Поэтому часто после обработки деталь подвергается последующему поверхностному оплавлению с использованием кислородно-ацетиленового пламени, либо в термических печах. Как следствие, плотность покрытия возрастает в несколько раз. После этого продукцию шлифуют и полируют, применяя твердосплавный инструмент.

С учётом последующей доводки изделия, толщину слоя металла после обработки принимают не менее 0,8 — 0,9 мм.

Для придания детали окончательных прочностных свойств её закаливают и отпускают, применяя технологические режимы, рекомендуемые для основного металла.

Плазменное напыление повышает теплостойкость, износостойкость и твёрдость изделий, увеличивает их способность противодействовать коррозионным процессам, а напыление с декоративными целями значительно улучшает внешний вид деталей.

Ограничениями технологии диффузионного плазменного напыления считаются чрезмерная сложность конфигурации заготовки, а также относительная сложность используемых установок.

При невысоких требованиях к равномерности образующегося слоя можно использовать и более простые установки, конструктивно напоминающие сварочные полуавтоматы. В этом случае плазменное напыление производится в воздушном пузыре, который образуется при обдуве зоны обработки компрессором. Электроды, в составе которых имеется напыляемый металл, последовательно перемещаются по контуру изделия. Для улучшения сцепления напыляемого металла с основой внутрь зоны напыления вводится также присадочный материал.

Производство металлических изделий модернизируется по мере развития передовых технологий. Металл в большей степени подвержен воздействию влаги, поэтому для обеспечения высокого срока эксплуатации и придания деталям, рабочим механизмам и поверхностям требуемых свойств, в современной промышленности широко используют напыление металлов. Технология порошковой обработки заключается в нанесении на базовую металлическую основу защитного слоя, обеспечивающего высокие антикоррозийные характеристики напыляемых изделий.

Металлическая поверхность после порошковой обработки приобретает важные защитные свойства. В зависимости от назначения и области применения, металлическим деталям придают огнеупорные, антикоррозийные, износостойкие характеристики.

Основная цель напыления базовой основы из металла – обеспечить продолжительный эксплуатационный ресурс деталей и механизмов в результате воздействия вибрационных процессов, высоких температур, знакопеременных нагрузок, влияния агрессивных сред.

Процессы напыления металлов выполняют несколькими способами:

  • Вакуумная обработка – материал при сильном нагревании в вакуумной среде преобразуется в пар, который в процессе конденсации осаживается на обрабатываемой поверхности.
  • Плазменное или газоплазменное напыление металла – в основу метода обработки положено использование электродуги, образующейся между парой электродов с нагнетанием инертного газа и ионизацией.
  • Газодинамический способ обработки – защитное покрытие образуется при контакте и взаимодействии микрочастиц холодного металла, скорость которых увеличена ультразвуковой струей газа, с подложкой.
  • Напыление лазерным лучом – генерация процесса происходит с использованием оптико-квантового оборудования. Локальное лазерное излучение позволяет проводить обработку сложных деталей.
  • Магнетронное напыление – выполняется при воздействии катодного распыления в плазменной среде для нанесения на поверхность тонких пленок. В технологии магнетронных способов обработки используются магнетроны.
  • Защита металлических поверхностей ионно-плазменным способом – основана на распылении материалов в вакуумной среде с образованием конденсата и осаждением его на обрабатываемой основе. Вакуумный метод не дает металлам нагреваться и деформироваться.

Технологический метод напыления деталей, механизмов, поверхностей из металла подбирают, в зависимости от характеристик, которые нужно придать напыляемой основе. Поскольку метод объемного легирования экономически затратный, в промышленных масштабах широко используют передовые технологии лазерной, плазменной, вакуумной металлизации.

Напыление в магнетронных установках

Металлизация поверхностей по технологии магнетронного напыления основана на расплавлении металла, из которого выполнена мишень магнетрона. Обработка происходит в процессе ударного действия ионами рабочей газовой среды, сформированными в плазме разряда. Особенности использования магнетронных установок:

  • Основными элементами рабочей системы являются катод, анод, магнитная среда, которая способствует локализации плазменной струи у поверхности распыляемой мишени.
  • Действие магнитной системы активизирует использование магнитов постоянного поля (самарий-кобальт, неодим), установленных на основании из магнитомягких материалов.
  • При подаче напряжения от источника электропитания на катод ионной установки происходит распыление мишени, причем силу тока нужно поддерживать на стабильно высоком уровне.
  • Магнетронный процесс основан на использовании рабочей среды, которой выступает соединение инертных и реакционных газов высокой чистоты, подающихся в камеру вакуумного оборудования под давлением.

Преимущества магнетронного напыления позволяют применять данную технологию обработки для получения тонких пленок металлов. Например, алюминиевые, медные, золотые, серебряные изделия. Происходит формирование пленок полупроводников – кремний, германий, карбид кремния, арсенид галлия, а также образование покрытий диэлектриков.

Главное достоинство магнетронного метода – высокая скорость распыления мишени, осаждения частиц, точность воспроизведения химического состава, отсутствие перегрева обрабатываемой детали, равномерность нанесенного покрытия.

Использование при напылении магнетронного оборудования дает возможность обрабатывать металлы и полупроводники с высокой скоростью осаждения частиц, создавать на напыляемой поверхности тонкие пленки с плотной кристаллической структурой, высокими адгезивными свойствами. К основному перечню работ по магнетронной металлизации относятся хромирование, никелирование, реактивное напыление оксидов, карбо- и оксинитридов, сверхскоростная наплавка меди.

Технология ионно-плазменной наплавки

Чтобы получать многомикронные покрытия на изделиях из металла, широко используют метод ионно-плазменного напыления. Он основан на использовании вакуумной среды и физико-химических свойств материалов испаряться и распыляться в безвоздушном пространстве.

Технологически сложный процесс позволяет решать важные технические задачи по металлизации изделий благодаря использованию установки ионно-плазменного напыления:

  • Увеличение параметров износоустойчивости, исключение спекания при эксплуатации изделий в условиях высоких температур.
  • Повышение коррозийной устойчивости металлов при эксплуатации в агрессивных водных, химических средах.
  • Придание электромагнитных свойств и характеристик, эксплуатация в границах инфракрасного и оптического диапазона.
  • Получение высококачественных гальванических покрытий, придание изделиям декоративно-защитных свойств, обработки деталей и механизмов, используемых в разных отраслях промышленности.

Процесс ионно-плазменного напыления базируется на использовании вакуумной среды. После поджига катода формируются пятна первого и второго уровня, которые перемещаются с высокой скоростью и образуют плазменную струю в ионном слое. Полученная в результате эродирования катодов струя проходит через вакуумную среду и вступает во взаимодействие с конденсируемыми поверхностями, осаживаясь плотнокристаллическим покрытием.

Использование ионно-плазменного напыления позволяет наносить защитные покрытия при температуре поджига катода до 100°C, отличается достаточно простой схемой получения слоев толщиной до 20 мкм.

С помощью ионно-плазменного напыления на металл удается придавать требуемые свойства конструктивно сложным изделиям нестандартной геометрической формы. После обработки металлическую поверхность не требуется покрывать финишным слоем.

Особенности плазменной металлизации

Наряду с ионно-плазменным напылением и магнетронными способами обработки металлов применяют еще один метод – плазменная металлизация. Главная задача технологии – защита изделий от окислительных процессов в агрессивных средах, повышение эксплуатационных качеств, упрочнение обрабатываемой поверхности, усиление сопротивляемости механическим нагрузкам.

Плазменное напыление алюминия и других металлов основано на высокоскоростном разгоне металлического порошка в потоке плазмы с осаждением микрочастиц в виде покрывающего слоя.

Особенности и преимущества технологии плазменного напыления на металл:

  • Высокотемпературный метод нанесения защитного слоя на обрабатываемую поверхность (порядка 5000-6000 °C) происходит за доли секунд.
  • Используя методы регулирования газового состава, можно получать комбинированное насыщение металлической поверхности атомами порошковых покрытий.
  • Благодаря равномерности потока плазменной струи удается получать одинаково пористое, качественное покрытие. Конечная продукция превосходит результаты традиционных способов металлизации.
  • Длительность процесса напыления невысока, что помогает достичь стопроцентной экономической эффективности использования плазменного оборудования в разных производственных масштабах.

Основные компоненты рабочей установки – высокочастотный генератор, камера герметизации, резервуар газовой среды, насосная установка для подачи давления, система управления. Использовать технологию плазменного напыления на металл допускается в домашних условиях при наличии необходимого оборудования с вакуумной камерой – воздействие кислорода приводит к окислению горячих металлических поверхностей и мишени.

На видео: восстановление деталей напылением.

Процесс лазерной обработки

Наплавка металлов лазерным методом позволяет восстанавливать детали и механизмы потоками света, генерируемыми от оптико-квантового оборудования. Вакуумное напыление лазером является одним из наиболее перспективных методов получения наноструктурированных пленок. В основу процесса положено распыление мишени световым лучом с последующим осаждением частиц на подложке.

Преимущества технологии: простота реализации металлизации, равномерное испарение химических элементов, получение пленочных покрытий с заданным стехиометрическим составом. Благодаря узкой направленности лазерного потока в месте его сосредоточения удается получить наплавку изделия любыми металлами.

Механизмы формирования жидкокапельных фаз:

  • Крупные капли частиц расплавленной мишени образуются путем воздействия гидродинамического механизма. При этом диаметр крупных капель варьируется в диапазоне 1-100 мкм.
  • Капли среднего размера формируются вследствие процессов объемного парообразования. Размер капель колеблется в диапазоне 0,01-1 мкм.
  • При воздействии на мишень коротких и частых импульсов лазерного луча в эрозийном факеле образуются частицы мишени небольшой величины – 40-60 нм.

Если в лазерной установке при наплавке металлов на мишень одновременно действуют все три механизма рабочего процесса (гидродинамика, парообразование, высокочастотный импульс), приобретение изделием требуемых характеристик зависит от величины влияния конкретного механизма наплавки.

Одно из условий качественной лазерной обработки – воздействие на мишень таким режимом облучения, чтобы на выходе получить лазерные факелы с наименьшим включением жидкокапельных частиц.

Оборудование для холодного напыления

Существует два варианта защиты металлов от негативного воздействия внешних и рабочих факторов – легирование и напыление с вакуумным оборудованием. То есть, в сплав добавляют атомы химических элементов, придающих изделиям требуемые характеристики, или наносят на базовую поверхность защитное покрытие.

Чаще всего в отрасли металлизации используют технологию нанесения гальванических покрытий, применяют методы погружения деталей в расплав, задействуют в процессах обработки вакуумную среду, пользуются магнетронным оборудованием.

Иногда используют детонационно-газовое напыление, которое разгоняет частицы до невероятных скоростей. Широко применяют плазмотроны, электродуговую металлизацию, газопламенную обработку, ионное напыление. Задачи промышленности диктуют свои условия, и перед инженерами возникла необходимость создать недорогое, простое в обращении оборудование, для которого можно использовать свойства нагретого сжатого воздуха.

Появилось понятие порошковой металлизации с добавлением в металлический порошок мелкодисперсионной керамики либо частиц твердого металла. Используется для работы с алюминием, никелем, медью.

Результат экспериментов превзошел ожидания, позволив решить следующие задачи:

  • Нагревание сжатого воздуха в камере приводит к повышению давления, что вызывает увеличение скорости вытекания наплава из сопла в установках.
  • При наборе металлическими частицами в газовой среде высокой скорости они ударяются о подложку, размягчаются и прикипают к ней. А керамические частицы уплотняют образовавшийся слой.
  • Использование порошковой технологии подходит для металлизации пластичных металлов – медь, алюминий, никель, цинк. После напыления изделия можно поддавать механической обработке.

Благодаря успешной работе инженеров удалось создать переносной аппарат, позволяющий выполнять металлизацию покрытий на всех промышленных предприятиях и в домашних условиях. Требования для успешной работы оборудования – наличие компрессорной установки (или воздушной сети) с давлением сжатого воздуха в пять-шесть атмосфер и электропитание.

В таблице ниже приведены данные для хромирования алюминия в домашних условиях. Перед нанесением гальванического покрытия требуется «положить» на деталь промежуточный металлический слой, а потом выполнять напыление алюминия.

Таблица 1. Хромирование алюминия

Использование передового оборудования для металлизации изделий позволяет решить технические вопросы, связанные с повышением антикоррозийных, прочностных, эксплуатационных характеристик, а также приданием машинам, деталям и механизмам требуемых свойств для работы в сложных эксплуатационных условиях.

Лазерная сварка (2 видео)

Процесс напыления и рабочие установки (24 фото)




















НАНЕСЕНИЕ ПОЛИМЕРНЫХ ПОКРЫТИЙ.

КЛАССИФИКАЦИЯ МЕТОДОВ.

1. Полимерно-порошковое покрытие

2. Характеристики полимерно-порошкового покрытия

3. Нанесение полимерных покрытий

4. Классификация способов нанесения покрытий

5. Первая группа нанесения полимерных покрытий

5.1 Вихревое напыление (вибрационный, вибровихревой метод нанесения полимерных покрытий)

2 Пневматическое напыление

3 Беспламенное напыление

4 Центробежный метод распыления порошков

6. Вторая группа нанесения полимерных покрытий

6.1 Газопламенное напыление

2 Плазменное напыление

3 Теплолучевой метод

4 Экструзионный метод

5 Напыление в вакууме

7. Третья группа нанесения полимерных покрытий

7.1 Технология порошковой окраски электростатическим напылением - технология зарядки коронным разрядом

7.2 Трибостатическое напыление - зарядка трением

3 Нанесение покрытия в ионизированном псевдоожиженном слое

Заключение

СПИСОК ИСПОЛЬЗОВАННЫХ ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

НАНЕСЕНИЕ ПОЛИМЕРНЫХ ПОКРЫТИЙ. КЛАССИФИКАЦИЯ МЕТОДОВ.

1. Полимерно-порошковое покрытие

Полимерное покрытие - результат обработки поверхности порошковой краской. Последняя представляет собой специальный твердый состав, который при повышении температуры превращается в сплошную пленку, призванную защитить металлическое изделие от коррозии и придать ему эстетичный внешний вид.

Порошковое полимерное покрытие широко применяется сегодня при ремонтно-строительных работах. Оно идеально подходит для элементов фасада (кровли, оконных профилей, дверей, ограждений), спортивного, садово-паркового инвентаря, а также офисной мебели.

Полимерно-порошковое окрашивание было разработано в 1950-х гг. в США. В то время только лишь начинало формироваться автомобильное производство, которое одним из немногих имело честь протестировать новейший вид покраски. С тех пор прошло уже более 60 лет, и каждый человек может пользоваться порошково-полимерным покрытием металла каждый день, в том числе и у себя на кухне. Сегодня же по объему выпуска термоактивных порошковых ЛКМ лидирует не кто иной как Европа. В России обстановка несколько иная, потому как серийное производство подобный продукции началось только лишь с 1975 года. Теперь полимерно-порошковое окрашивание становится необычайно популярным, проникая во многие слои, раньше занятые традиционными лакокрасочными покрытиями.

Метод порошкового окрашивания является популярной альтернативой нанесению жидких лакокрасочных материалов для деталей, допускающих термообработку. Чаще всего слой порошково-полимерного состава на изделии составляет 0,3мм.

Порошковые краски - это твердые дисперсные композиции, в состав которых входят пленкообразующие смолы, отвердители, наполнители, пигменты и целевые добавки. Получают порошковые краски главным образом смешением компонентов в расплаве с последующим измельчением сплава до максимального размера частиц.

Порошковые краски своей популярностью обязаны отсутствию растворителей и содержанию веществ, гарантирующих непроницаемое для солей, кислот и влаги тонкослойное покрытие. При этом оно отвечает высоким стандартам качества, является абразивостойким и высокопрочным.

Повышенная устойчивость к механическим повреждениям гарантирует сохранность внешнего вида на протяжении всего срока службы окрашенного полимерно-порошковым покрытием металла.

Основное достоинство метода полимерно-порошкового окрашивания заключается в антикоррозийной защите металла. И получаемое покрытие обладает повышенной жаростойкостью, электроизоляционными свойствами, долговечностью, прочностью, экологичностью, сохраняет первоначальный колер и соответствует Европейским стандартам.

2. Характеристики полимерно-порошкового покрытия

Толщина покрытия 60...80мкм;

Высокая устойчивость к ультрафиолетовому излучению;

Минимальный радиус изгиба - 1T;

Возможность окраски в любой цвет.

Повышенная устойчивость к механическим повреждениям, что гарантирует сохранность внешнего вида на протяжении всего срока службы окрашенного металла;

Повышенная прочность на удар, изгиб, истираемость;

Высокая адгезия с окрашиваемой поверхностью;

Высокая антикоррозионная стойкость к воздействию влаги, растворов щелочей и кислот, органических растворителей;

Широкий рабочим диапазоном от -60 0С до +150 0С;

Непревзойденные эстетические характеристики: повышенная толщина полимерного покрытия позволяет маскировать незначительные дефекты поверхности.

Кроме того, у полимерной краски существуют множество поверхностных эффектов, которые позволяют добиваться безупречного внешнего вида готовых изделий без утомительной и долгой подготовки.

Порошково-полимерное покрытие устойчиво к атмосферной коррозии и может уверенно эксплуатироваться в условиях:

Промышленной атмосфере средней агрессивности сроком до 30 лет;

Слабоагрессивной атмосферы сроком до 45 лет;

Приморской городской атмосферы средней агрессивности сроком до 15 лет.

3. Нанесение полимерных покрытий

Технология нанесения полимерных порошковых красок - экологически чистая, безотходная технология получения высококачественных защитных и защитно-декоротивных полимерных покрытий. Покрытие формируют из полимерных порошков, которые напыляют на поверхность изделия, а затем в печи под определенной температурой проходит процесс термообработки (полимеризации).

Процесс нанесения покрытий практически всеми известными методами предполагает последовательную реализацию следующих основных этапов:

1. Очистку покрываемой поверхности от загрязнения, оксидных и годрооксидных слоев и проведение активационной обработки;

Нанесение полимерного материала на поверхность;

Закрепление полимерного материала на поверхности;

Заключительная обработка покрытия с целью достижения необходимых служебных свойств;

Контроль качества покрытия, оценка соответствия его свойств, геометрических параметров требуемым.

Полимерные покрытия, наносимые на поверхность твердого тела, используются для повышения служебных свойств изделий.

Качество покрытий зависит от строгого соблюдения технологических режимов всех стадий процесса.

Подготовка поверхности.

Для очистки поверхности от ржавчины, окалины, старых покрытий в основном используют механические и химические способы. Из механических способов наиболее распространение струйная абразивная обработка с применением дробеметных, дробеструйных и пескоструйных аппаратов.

В качестве обезжиривающих веществ применяют органические растворители, водные моющие (щелочные и кислые) растворы. Органические растворители (Уайт-спирит, 646) из-за вредности и огнеопасности применяют для обезжиривания способом ручной протирки х/б ветошью не оставляющей ворсы на поверхности изделий, ограниченно, главным образом при окрашивании небольших партий. Основной промышленный способ обезжиривания связан с использованием водных моющих составов - концентратов. В основном они представляют собой порошки. Обезжиривание проводят при 40-600С; продолжительность обработки окунанием 5-15 мин, распылением 1-5 мин. Большинство составов пригодно для обезжиривания как черных, так и цветных металлов (алюминий, медь, цинк и магниевые сплавы). Обезжиривание требует не только обработку моющим составом, но и последующую их промывку и сушку.

Химическое удаление оксидов основано на их растворении или отслаивании с помощью кислот (в случае черных металлов) или щелочей (для алюминия и его сплавов). Эта операция преследует цель улучшить защиту изделий, сделать ее более надежной и длительной. наиболее распространено фосфатирование черных металлов и оксидирование цветных, в первую очередь алюминия и его сплавов. Цветные металлы (алюминий, магний, их сплавы, цинк) для улучшения адгезии и защитных свойств покрытий оксидируют. Завершающей стадией получения конверсионных покрытий, как и любых операций мокрой подготовки поверхности, является сушка изделий от воды.

Подготовка порошкового материала и сжатого воздуха.

Порошковые полимерные материалы промышленного изготовления, у которых не истек срок годности, как правило, пригодны для получения покрытий без какой-либо подготовки. Исключения могут быть в тех случаях, когда нарушались условия хранения или транспортировки материала.

Наиболее типичные дефекты красок, связанные с их неправильным хранением: комкование, химическое старение; увлажнение сверх допустимой нормы. Рекомендуемая температура хранения порошковых красок не выше 30°С. Слежавшиеся краски, имеющие крупные или даже мелкие агрегаты, не пригодны для применения и требуют переработки - измельчения до требуемого размера частиц и просева. При малой агрегации частиц иногда ограничиваются просевом. Рекомендуемая ячейка сита для просеивания должна быть в пределах 150-200 мкм.

Химическому старению в наибольшей степени подвержены термореактивные краски с высокой реакционной способностью при несоблюдении условий их хранения. Краски, имеющие признаки химического старения, должны выбраковываться, их исправление практически невозможно. Краски с повышенной степенью увлажнения (что видно по их пониженной сыпучести, склонности к агрегации, плохой заряжаемости) подлежат - сушке при температуре не выше 35 0С на протвине слоем 2-3см. в течение 1-2 часов с периодическим перемешиванием краски.

Полимерные порошковые краски являются гигроскопичными и поглощают из окружающего воздуха пары воды в результате чего, краски плохо транспортируются по трубопроводу распылителей, распыляются, заряжаются (особенно касается трибостатического напыления). Подготовка сжатого воздуха заключается в его очистке от капельной влаги и масла с последующей осушкой от их паров. Воздух, используемый для распыления порошковых красок, должен удовлетворять следующим требованиям: содержание масла - не более 0,01 мг/м3; содержание влаги - не более 1,3 г/м3; точка росы - не выше 7°С; содержание пыли не более 1мг/м3. Подготовка осуществляется пропусканием сжатого воздуха через маслоуловители и установку осушки сжатого воздуха ОСВ-30, в котором освобождение от влаги сжатого воздуха достигается пропусканием последнего через слой сорбента забирающий из сжатого воздуха пары воды и масла. Регенерация сорбента осуществляется прокаливанием сорбента при температуре 120-150 0С в течение 2-3 часов с последующим охлаждением последнего. Срок использования сорбента около 5 лет.

4. Классификация способов нанесения покрытий

Все способы нанесения полимерных покрытий можно разделить на три группы.

I - группа - способы нанесения, осуществляемые путем напыления порошка на изделия, нагретого выше температуры плавления наносимого полимера:

а) вихревое напыление (нанесение в псевдоожиженном слое), вибрационный, вибровихревой;

б) пневматическое напыление;

в) безплазменное напыление;

г) центробежное напыление.

II - группа - способы нанесения, осуществляемые путем напыления расплавленных частиц порошкового полимера на поверхность нагретого изделия:

а) газоплазменное напыление;

б) теплолучевое напыление;

в) экструзионное напыление;

III - группа - способы нанесения, осуществляемые путем напыления электрически заряженных частиц порошка на поверхность противоположно заряженной поверхности:

а) электростатическое напыление - зарядка коронным зарядом в электрическом поле;

б) трибостатическое напыление;

в) нанесение покрытия в ионизированном псевдоожиженном слое.

Рассмотрим подробнее способы нанесения полимерных покрытий

5. Первая группа нанесения полимерных покрытий

1 Вихревое напыление (вибрационный, вибровихревой метод нанесения полимерных покрытий)

Является самым часто встречающимся методом нанесения порошковых покрытий.

Процесс вихревого напыления состоит в следующем: между основанием резервуара и агломерационной камерой располагается воздухо- или газопроницаемая плита из металлокерамики или же фильтр из синтетического материала (диаметр пор < 25 мкм). В агломерационную камеру загружается полимерный порошок. Размер частиц, образующихся в результате спекания порошков, составляет от 50 до 300 мкм. Для спекания в нижний отсек резервуара (основание резервуара) вдувается воздух, который, равномерно распределяясь при прохождении через пористую пластину, проникает в агломерационную камеру и создает «кипящий» слой порошка. Необходимое давление воздуха зависит от высоты «кипящего» слоя и плотности порошка и составляет от 2,6 до 2,0 бар. Необходимое количество воздуха равно от 80 до 100 м3 в час и на 1 м2 поверхности днища. Завихренный порошок ведет себя подобно жидкости (он «псевдоожижен»), поэтому предметы, на которые требуется нанести покрытие, могут быть легко в него погружены. Для расплавления порошка необходим предварительный нагрев металлических предметов, на которые предполагается нанести покрытие. Предварительный нагрев целесообразно осуществлять в сушильных печах с циркуляцией воздуха при температурах выше плавления соответствующего полимера (100-200 °С). До предварительного нагрева поверхность обезжиривается. Подготовленные и нагретые металлические изделия опускаются в кипящий слой порошка (рисунок 1). После нанесения покрытия охлаждение полиэфинов должно по возможности осуществляться медленно. Полимерное покрытие может быть доведено до зеркального блеска.

Рисунок 1. Схема установки для нанесения покрытий в псевдоожиженном слое:

Трубка для подвода воздуха, 2 - подвеска, 3 - корпус, 4 - ремонтируемая деталь, 5 - пористая перегородка, 6 - порошок

Преимущества:

1. за один цикл нанесения и последующего отверждения можно получить толстослойное покрытие, обладающее высокой антикоррозионной стойкостью;

2. при соблюдении технологического цикла нанесения можно регулировать равномерность толщины пленки;

Низкая первоначальная стоимость оборудования.

Недостатки:

1. для загрузки ванны необходимо большое количество порошка;

2. обрабатываемая деталь должна быть предварительно нагрета;

Этот метод нанесения используется только в тех случаях, когда необходимо получить толстослойное покрытие;

Окрашиваемые изделия должны быть простой формы.

При вибрационном методе для создания в рабочей зоне взвешенного слоя полимерного порошка установки снабжены вибраторами - механическими, электромагнитными или воздушными, заставляющими вибрировать корпус установки или соединенное с корпусом диафрагмой только дно ванны. Пористой перегородки камера не имеет. Широкого применения этот метод не получил, так как не обеспечивает равномерного покрытия из-за того, что при вибрации на поверхность взвешенного слоя поднимаются более крупные частицы порошка.

Сочетание вихревого метода с вибрационным носит название вибровихревого метода напыления, который обеспечивает однородную структуру и плотность взвешенного слоя, и применяется для нанесения порошков полимеров, обладающих плохой сыпучестью или слежавшихся.

В нижней части установки под ванной смонтированы электромагнитный вибратор и мембрана с частотой 10-100 колебаний в секунду. На частицы порошка одновременно действуют вибрация и потоки воздуха, что обеспечивает равномерный слой покрытия. Метод предназначен для нанесения защитных и декоративных покрытий.

5.2 Пневматическое напыление

Этот метод нанесения покрытий заключается в напылении пневматическим распылителем порошкового материала на поверхность предварительно нагретого изделия. Метод позволяем наносить покрытия на изделия разного габаритного размера и конфигурации с использованием небольшого количества порошка. .

Основные достоинства способа высокая производительность, простота конструктивного исполнения и универсальность Недостатками метода являются необходимость предварительного нагрева изделий, весьма значительные (до 50%) потери распыляемого материала, невозможность получения равномерных покрытий по толщине пленки, особенно при наличии острых кромок и невертикальных плоскостей.

Все установки для пневматического напыления порошковых полимеров состоят из питателя и распыляющих головок, которые снабжены приборами и аппаратурой для регулирования и контроля процесса нанесения покрытий. Питатель предназначен для подачи в распыляющую головку воздушно-порошковой взвеси. Посредством головки распылителя порошок направляется на покрываемую поверхность.

На рис. 106, а-д показаны сменные насадки пистолета-распылителя для нанесения порошковых материалов. Пистолет работает по принципу эжекционного подсоса порошка. Расход подаваемого воздуха регулируется иглой, воздушно-порошковая смесь подается к пистолету от питателя.

3 Беспламенное напыление

Порошкообразный полимер в смеси с воздухом через распыляющую головку наносится на предварительно очищенную нагретую поверхность изделия. По сравнению с методом газопламенного напыления здесь применяется простая конструкция распылительной головки и возможность напыление изделий различных конструкций и размеров при небольшом количестве порошка. Беспламенное напыление применяется для покрытия наружных и внутренних поверхносте труб различных диаметров длиной до 12м.

5.4 Центробежный метод распыления порошков

Для нанесения покрытий на внутренние поверхности труб, емкостей, сосудов цилиндрической формы получил распространение центробежный способ получения покрытий, заключающийся в нанесении порошка на нагретые изделия при одновременном их вращении.

Порошок из дозирующего устройства поступает на диски, вращающиеся в горизонтальной плоскости в противоположных направлениях. Порошок на дисках распыляется под действием центробежных сил, образуя плоскую струю.

6. Вторая группа нанесения полимерных покрытий

1 Газопламенное напыление

полимерный покрытие порошковый напыление

Сущность процесса газопламенного нанесения полимерного покрытия состоит в том, что струю сжатого воздуха с взвешенными в ней частицами порошка пропускают через факел ацетилено-воздушного пламени. В пламени частицы порошка нагреваются, размягчаются и, ударяясь в предварительно подготовленную и нагретую поверхность, прилипают к ней, образуя сплошное покрытие. В ремонтной практике нанесение полимерных покрытий газопламенным способом применяют для выравнивания сварных швов и неровностей на поверхностях кабин и деталей оперения автомобилей, тракторов, комбайнов.

Материал для напыления - пластмасса ПФН-12 (МРТУ6-05-1129-68); ТПФ-37 (СТУ12-10212-62). Порошок из этих материалов перед использованием должен быть просеян через сито с сеткой № 016... 025 (ГОСТ 3584-53) и при необходимости просушен при температуре не более 60°С в течение 5...6ч, а затем просеян.

Рисунок 2. Схема газопламенного напыления через горелку-распылитель.

Перед нанесением покрытия газопламенным способом поврежденные поверхности с вмятинами и неровностями должны быть выправлены, а трещины и пробоины заварены. Поверхность сварных швов должна быть зачищена шлифовальной машинкой до удаления острых углов и кромок. Поверхности вокруг сварных швов и неровностей зачищают до металлического блеска. Подготовленная поверхность не должна иметь окалины, ржавчины и загрязнений. Нанесение покрытия производится с помощью установки УПН-6-63. Вначале пламенем горелки нагревают поврежденную поверхность до температуры 220... 230 °С. При этом скорость перемещения горелки составляет 1,2... 1,6 м/мин; давление ацетилена- не ниже 0,1004 МПа; давление сжатого воздуха- 0,3... 0,6 МПа; расстояние от мундштука до нагреваемой поверхности- 100... 120 мм. Затем, не выключая пламени горелки, открывают вентиль подачи порошка. Порошок наносят на нагретую поверхность за два-три прохода горелки. Через 5...8 с после напыления нанесенный слой пластмассы прикатывают роликом, смоченным холодной водой. Прикатанную поверхность пластмассы прогревают пламенем горелки в течение 5...8 с, на нагретое покрытие наносят второй слой порошка за два-три прохода и снова прикатывают роликом. Напыленную поверхность зачищают шлифовальной машинкой так, чтобы переход от поверхности металла к напыленному слою был равномерным.

Для газопламенного (термического) порошкового окрашивания не требуется заряжать изделие и частицы порошка для создания электростатического поля. Это означает, что окрашивать можно практически любую поверхность: не только металлы, но и пластики, стекло, керамику, дерево и многие другие материалы, которые бы деформировались или сгорели в камере полимеризации.

Газопламенная покраска исключает необходимость использовать громоздкие печи и камеры полимеризации, и выводит порошковую покраску на новые рубежи применения данной технологии, поскольку оборудование для распыления является портативным и универсальным. Его также используют не только для нагревания поверхности, напыления порошка, а и для повторного нагрева с целью выравнивания поверхности.

Среди недостатков данной технологии - это то, что покрытия не всегда имеют ровную поверхность, и их значение скорее функциональное, нежели декоративное. Но для таких объектов как мосты, корпуса кораблей или водонаборные башни важнее защита от коррозии и ржавчины, чем незначительная неровность в покрытии.

6.2 Плазменное напыление

Сущность способа состоит в переносе порошкового материала на поверхность изделия высокотемпературным потоком плазмы, которая образуется в результате частичной ионизации инертного газа (аргон, гелий или смесь гелия с азотом) при пропускании его через электрическую дугу при температуре от 3000 до 80000С.

При введении порошкового материала в поток плазмы порошок плавится и вместе с плазменным газом наносится на поверхность изделия. Нанесение порошковых материалов этим способом осуществляется вручную с помощью плазменного распылителя. Установка включает распылитель, трансформатор-выпрямитель, устройство для управления потоков газа, емкость для материала. В связи с тем, что наносить плазменным распылением можно только порошковые материалы с узким диапазоном дисперсного распределения частиц порошка и выдерживающих нагрев порядка 3500С (к таким полимерам относятся фторопласты, полиамиды), этот способ, несмотря на свои преимущества (высокая производительность, безвредность и др.), не нашел широкого применения в промышленности .

6.3 Теплолучевой метод

Более производителен и универсален по сравнению с газопламенным методом. Порошкообразный термопластичный материал подается в зону мощного теплового потока, где материал расплавляется и наносится на поверхность изделия. Воздушно-порошковая смесь образуется в вировихревом аппарате и направляется на изделие. Этот метод более эффективен, чем пламенный, сокращает потребление порошка и имеет меньшую энергоемкость. Покрытие имеет более высокие физико-механические характеристики и лучшую адгезию к поверхности изделия. Недостатками метода является значительные потери порошка и загрязнение воздуха.

6.4 Экструзионный метод

Для нанесения покрытий из термопластичных полимерных материалов на электрические провода, кабели, стальные трубы, на деревянные планки и другие полуфабрикаты применяются экструзионные линии на базе одночервячных пластицирующих экструдеров, причем широкое использование получили экструзионные агрегаты в кабельной промышленности. Например, для техники связи медные провода диаметром 0,4-1,4 мм покрываются полиэтиленовой или поливинилхлоридной пленкой толщиной 0,15-0,25 мм; для низкочастотной техники применяются покрытия из ПВХ; для кабелей диаметром 20-120 мм применяются покрытия из ПЭВП толщиной 4-25 мм. .

<#"809022.files/image004.gif"> <#"809022.files/image005.gif">

Рисунок 5. Нанесение покрытия с помощью распылителя

Его популярность обусловлена следующими факторами: высокая эффективность зарядки почти всех порошковых красок, высокая производительность при порошковом окрашивании больших поверхностей, относительно низкая чувствительность к влажности окружающего воздуха, подходит для нанесения различных порошковых покрытий со специальными эффектами (металлики, шагрени, мауары и т.д.).

Рисунок 6. Движения ионов коронного разряда в электрическом поле и осаждения их на поверхность частиц («ударная зарядка»).

Наряду с достоинствами электростатическое напыление имеет ряд недостатков, которые обусловлены сильным электрическим полем между пистолетом распылителем и деталью, которое может затруднить нанесение порошкового покрытия в углах и в местах глубоких выемок. Кроме того, неправильный выбор электростатических параметров распылителя и расстояния от распылителя до детали может вызвать обратную ионизацию и ухудшить качество полимерного порошкового покрытия.

Оборудование для порошковой окраски - электростатический пистолет распылитель есть типовом комплексе порошковой окраски Антанта.

Рисунок 7. Эффект клетки Фарадея

Эффект клетки Фарадея - результат воздействия электростатических и аэродинамических сил.

На рисунке показано, что при нанесении порошкового покрытия на участки, в которых действует эффект клетки Фарадея, электрическое поле, создаваемое распылителем, имеет максимальную напряженность по краям выемки. Силовые линии всегда идут к самой близкой заземленной точке и скорее концентрируется по краям выемки и выступающим участками, а не проникают дальше внутрь.

Это сильное поле ускоряет оседание частик, образуя в этих местах порошковое покрытие слишком большой толщины.

Эффект клетки Фарадея наблюдается в тех случаях, когда наносят порошковую краску на металлоизделия сложной конфигурации, куда внешнее электрическое поле не проникает, поэтому нанесение ровного покрытия на детали затруднено и в некоторых случаях даже невозможно.

Обратная ионизация

Рисунок 8. Обратная ионизация

Обратная ионизация вызывается излишним током свободных ионов от зарядных электродов распылителя. Когда свободные ионы попадают на покрытую порошковой краской поверхность детали, они прибавляют свой заряд к заряду, накопившемуся в слое порошка. Но поверхности детали накапливается слишком большой заряд. В некоторых точках величина заряда превышается настолько, что в толще порошка проскакивают микро искры, образующие кратеры на поверхности, что приводит к ухудшению качества покрытия и нарушению его функциональных свойств. Также обратная ионизация способствует образованию апельсиновой корки, снижению эффективности работы распылителей и ограничению толщины получаемых покрытий.

Для уменьшения эффекта клетки Фарадея и обратной ионизации было разработано специальное оборудование, которое уменьшает количество ионов в ионизированном воздухе, когда заряженные частицы порошка притягиваются поверхностью. Свободные отрицательные ионы отводятся в сторону благодаря заземлению самого распылителя, что значительно снижает проявление вышеупомянутых негативных эффектов. Увеличив расстояние между распылителем и поверхностью детали, можно уменьшить ток пистолета распылителя и замедлить процесс обратной ионизации.

7.2 Трибостатическое напыление - зарядка трением

Статическая электризация осуществляется путем обмена зарядами за счет разности в работе выхода электронов у материала частиц и материала стенок в зарядном устройстве или при обмене зарядами между частицами из-за различий в химическом составе примесей, температуре, фазовом состоянии, структуре поверхности и т.д.

Рисунок 9. Триботехническое напыление

В отличие от электростатического напыления, в данной системе нет генератора высокого напряжения для распылителя. Порошок заряжается в процессе трения.

Главная задача - увеличить число и силу столкновений между частицами порошка и заряжающими поверхностями пистолета распылителя.

Одним из лучших акцепторов в трибоэлектрическом ряду является политетрафторэтилен (тефлон), он обеспечивает хорошую зарядку большинства порошковых красок, имеет относительно высокую износоустойчивость и устойчив к налипанию частиц под действием ударов.

Рисунок 10. Отсутствие эффекта клетки Фарадея

В распылителях с трибостатической зарядкой не создается ни сильного электрического поля, ни ионного тока, поэтому отсутствует эффект клетки Фарадея и обратной ионизации. Заряженные частицы могут проникать в глубокие скрытые проемы и равномерно прокрашивать изделия сложной конфигурации.

Также возможно нанесение нескольких слоев краски для получения толстых порошковых покрытий.

Зарядные устройства трибоэлектрических распылителей должны удовлетворять следующим трем условиям необходимым для эффективной зарядки напыляемого материала:

обеспечивать многократные и эффективные соударения частиц порошка с трибоэлектризующим элементом;

производить снятие поверхностного заряда с трибоэлектризующего элемента;

обеспечивать стабильность процесса трибозарядки.

Распылители с использованием трибостатической зарядки конструктивно более надежны, чем пистолеты распылители с зарядкой в поле коронного разряда, поскольку они не имеют элементов, преобразующих высокое напряжение. За исключением провода заземления, эти распылители являются полностью механическими, чувствительными только к естественному износу.

7.3 Нанесение покрытия в ионизированном псевдоожиженном слое

Устройство для нанесения покрытий представляет собой камеру с электрическим кипящим слоем, в которую помещается изделие - 1 (рисунок 5). Камера делится пористой перегородкой - 2 на две части. В верхнюю часть на пористую перегородку насыпается порошковый материал - 3, а в нижнюю - подается сжатый воздух.

Рисунок 11. Нанесение покрытия в камере с кипящим слоем

При определенной скорости воздуха, проходящего через пористую перегородку, порошок переводится во взвешенное состояние, при котором частицы как бы витают в восходящем потоке воздуха. Из-за хаотичности движения частиц происходит их соударение между собой, что приводит к статической электризации частиц и зарядка их как отрицательным, так и положительным зарядом.

Электрическое поле, создаваемое между высоковольтным электродом, размещенным в порошковом слое, и заземленным изделием, вызывает разделение частиц в кипящем слое по знакам заряда. При приложении отрицательного напряжения к высоковольтным электродам положительно заряженные частицы накапливаются вокруг высоковольтного электрода, а отрицательно заряженные - в верхней части кипящего слоя порошка. Частицы, имеющие достаточно большой отрицательный заряд, выносятся электрическим полем из кипящего слоя и направляются к изделию. Из-за большой концентрации частиц в кипящем слое коронный разряд у поверхности высоковольтных электродов находится в полностью запертом состоянии. По мере накопления положительно заряженных частиц вокруг высоковольтных электродов происходит разряд и импульсное локальное отпирание коронного разряда, при котором осуществляется перезарядка частиц. Таким образом, в электрическом кипящем слое зарядка частиц носит сложный характер, сочетающий статическую электризацию частиц и зарядку в газовом разряде.

Процесс транспортировки частиц порошка к напыляемому изделию осуществляется в потоке воздуха. При этом соотношение аэродинамических и электрических сил, действующих на частицу, сильно отличается для разных устройств, используемых для нанесения покрытий. Если для распылителей с внутренней зарядкой транспортировка частиц осуществляется исключительно потоком воздуха, то в камерах с электрическим кипящим слоем направление движения частиц к изделию создается в основном электрическим полем. Для распылителей с внешней зарядкой перемещение частиц к изделию в равной мере определяется аэродинамическими и электрическими силами.

Способ нанесения покрытий из порошковых материалов в электростатическом поле имеет существенные преимущества перед всеми вышеупомянутыми способами:

Отсутствие предварительного нагрева;

Снижение потерь порошкового материала;

Возможность получения равномерных по толщине покрытий на изделиях сложной конфигурации;

Возможность автоматизации процесса напыления;

Универсальность и высокая производительность;

Экологическая чистота;

Сведение к минимуму пожаро- и взрывоопасность.

Эти факторы определили широкое распространение технологии нанесения полимерных покрытий в электростатическом поле.

Заключение

Нанесение полимерных покрытий является довольно сложным технологическим процессом, который может быть использован как для защиты различных видов материалов от неблагоприятных воздействий окружающей среды, так и для придания привлекательного внешнего вида различным товарам. .

Как правило, нанесение полимерных покрытий осуществляется с помощью специализированного оборудования в помещениях, где поддерживаются определенные показатели внутренней среды. В настоящее время существует множество технологических методик нанесения полимерных покрытий на различные виды материалов.

Наиболее популярными технологиями, которые используются при нанесении различных видов полимерных покрытий являются газопламенный и вихревой методы, вибрационный и вибровихревой способ, нанесение покрытий в электостатическом поле, а также применение различных видов суспензий, эмульсий и гуммировочных составов для обработки поверхностей.

Как правило, нанесение полимерных покрытий производится в процессе производства материалов или готовых изделий, но в некоторых случаях данный вид покрытий может наноситься, например, на автомашину, которая уже несколько лет эксплуатировалась владельцем.

Каждая технология нанесения полимерных покрытий имеет свои особенности, которые могут быть связаны как с процессом адгезии полимерного материала, так и со способом нанесения полимера. В любом случае, перед покрытием с помощью полимера любого изделия необходимо тщательно подготовить его поверхность, удалив грязь, старый слой краски или иные шероховатости. .

Кроме того, при проведении работ по нанесению полимера на поверхность любого материала необходимо четко соблюдать технологию данного процесса, в некоторых случаях температура, при которой происходит нанесения покрытия, может достигать несколько сот градусов. Также необходимо отметить, что в помещении, где производятся подобные работы, должна быть идеальная чистота, так как пыль и другие частицы могут привести к растрескиванию полимерного покрытия с течением времени.

При работе на оборудовании для нанесения полимерных покрытий необходимо тщательно соблюдать меры предосторожности, так как существует возможность получения серьезной травмы.

СПИСОК ИСПОЛЬЗОВАННЫХ ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

Паниматченко А.Д. Переработка пластмасс, изд. Профессия, Спб 2005.

Карякина М.И., Попцов В.Е. Технология полимерных покрытий: Учебное пособие для техникумов. - М.: Химия, 1983 - 336с., ил.

Яковлев А.Д., Здор В.Ф., Каплан В.И. Порошковые полимерные материалы и покрытия на их основе. Л., Химия, 1979. 254 с.

4. Майссела Л. и Глэнга Р. Технология тонких пленок: Справочник/Под ред. Пер. с англ.; Под ред. Елинсона М. И., Смолко. Г. Г. - М.: Советское радио, 1977. -Т. 1. - 406 с.; Т. 2. - 353 с.

Липин Ю.В., Рогачев А.В., Сидорский С.С., Харитонов В.В. Технология вакуумной металлизации полимерных материалов- Гомель, 1994. -206 с.

Ройх И.Л., Калтунова Л. Н. Защитные вакуумные покрытия на стали. М.: Машиностроение, 1971. - 280 с.

7. Брук М.А., Павлов С.А. Полимеризация на поверхности твердых тел. - М.: Химия, 1990. - 130 с.

Ясуда Х. Полимеризация в плазме. - М.: Мир, 1988. - 376 с.

Красовский А.М., Толстопятов Е.М. Получение тонких пленок распылением полимеров в вакууме/ Под ред. Белого В.А.- Мн.: Наука и техника, 1989. - 181 с.

Металлизация – эффективный способ придать конечному продукту дополнительные технические и эксплуатационные характеристики. Плазменное напыление представляет собой совершенный вариант диффузной обработки металлических поверхностей для создания качественного покрытия из другого металла или сплава. Диффузная металлизация позволяет улучшить твердость, прочность, цвет и антикоррозийные свойства исходной детали.

Отличительные особенности диффузного напыления

При работе с металлическими поверхностями часто возникает необходимость придать конечному продукту дополнительные характеристики, чтобы расширить область применения детали. Можно защитить металлическую поверхность от воздействия влаги, высокой температуры и агрессивной химической среды. Плазменное напыление имеет ряд особенностей, которые отличают процесс металлизации от других вариантов обработки металлических поверхностей:

  1. Ускоренный процесс нанесения покрытий благодаря высокотемпературному воздействию на обрабатываемую поверхность – порядка 5000-6000° C. Технологически напыление может длиться доли секунд для получения необходимого результата.
  2. Плазменная обработка металлов позволяет создать на поверхности комбинированный слой. Диффундировать можно не только металлические частицы, но и элементы газа из плазменной струи. В итоге металл насыщается атомами нужных химических элементов.
  3. Традиционная металлизация протекает неравномерно и характеризуется длительностью технологического процесса и возможными окислительными реакциями. Струя высокотемпературной плазмы создает равномерную температуру и давление, обеспечивая высокое качество финальных покрытий.
  4. При помощи плазменной струи перенос частиц металла и атомов газа происходит мгновенно. Процесс относится к области сварки с применением порошков, стержней, прутков и проволоки. Перенесенные частицы образуют слой толщиной от нескольких микрон до миллиметров на поверхности твердого тела.

Современная диффузная металлизация предполагает использование более сложного оборудования, чем в случаях, когда применяют газоплазменное оборудование. Для организации процесса диффузной обработки требуется одновременно наличие газовой и электрической аппаратуры.

Оборудование для диффузного воздействия

Ионно-плазменное напыление по поверхности металлов проводится с использованием высокотемпературной технической плазмы – совокупности большого количества частиц (квантов света, положительных ионов, нейтральных частиц, электронного газа). Под воздействием высокой температуры за счет электрических разрядов в газах происходит интенсивная термоионизация частиц, которые сложно взаимодействуют друг с другом и окружающей средой. Благодаря этому различают плазму, ионизированную слабо, умеренно и сильно, которая, в свою очередь, бывает низкотемпературной и высокотемпературной.

Создать необходимые условия для протекания процесса плазменной ионизации и обработки металлических покрытий помогает специальное оборудование – плазменные установки. Обычно для работы используется дуговой, импульсный или искровой электрические разряды.


Схема газотермического напыления

Для реализации технологического процесса требуются следующие установки:

  1. Генератор высокочастотного типа (можно использовать сварочный преобразователь) – служит источником разряда.
  2. Герметизированная камера, в которую помещают детали для нанесения покрытий методом плазменного напыления.
  3. Газовый резервуар. В его атмосфере выполняется ионизация частиц под действием электрического разряда.
  4. Установка, создающая давление газа. Можно использовать вакуумную или насосную аппаратуру.
  5. Система, при помощи которой можно качественно изменять токовые характеристики, давление, напряжение, тем самым увеличивая или уменьшая толщину напыляемых покрытий.

Как происходит плазменное напыление: в герметизированной камере фиксируют обрабатываемую деталь, создают электрический разряд, прокачивают рабочую среду с необходимым давлением и напыляемыми порошковыми элементами. Образуется высокотемпературная плазма, которая переносит частицы порошков вместе с газовыми атомами на поверхность некоторой детали. При проведении диффузной металлизации в вакууме, в атмосфере инертного газа или при пониженном давлении можно увеличить скорость движения частиц и получить боле плотный и высокоадгезивный тип покрытий.

Где используют плазменную металлизацию

Поскольку напыляемым материалом может служить практически любой сплав или металл, ионно-плазменное напыление широко используют в различных отраслях промышленности, а также для проведения ремонтно-восстановительных работ. Любой металл в виде порошков подается в плазменные установки, где под воздействием высокотемпературной плазмы расплавляется и проникает в обрабатываемую металлическую поверхность в виде тонкого слоя напыления. Сферы применения диффузной металлизации:

  • детали для авиационной, космической и ракетной промышленности;
  • машиностроительное оборудование и энергетическая отрасль;
  • металлургическая и химическая отрасль промышленности;
  • нефтедобывающая, нефтеперерабатывающая и угольная отрасль;
  • транспортная сфера и производство приборов;
  • ремонт и реставрация машин, оборудования, изношенных деталей.

Когда струя плазмы и порошков проходит по электродуге и осаживается на обрабатываемой поверхности, образованный слой приобретает важные качественные и эксплуатационные характеристики:

  • жаростойкость;
  • жаропрочность;
  • коррозийную устойчивость;
  • электроизоляцию;
  • теплоизоляцию;
  • эрозийную прочность;
  • кавитационную защиту;
  • магнитные характеристики;
  • полупроводниковые свойства.

Ввод напыляемых порошков в установки осуществляется с плазмообразующим или транспортируемым газом. Плазменное напыление позволяет получать различные типы покрытий без ограничения по температуре плавления: металлы, комбинированные сплавы, карбиды, оксиды, бориды, нитриды, композит. Материал, который обрабатывается в установках, не подвергается структурным изменениям, но поверхность изделия приобретает необходимые качественные характеристики. Напылять можно комбинированные слои (мягкие и твердые), тугоплавкие покрытия, различные по плотности составы.

Варианты плазменной металлизации

Для нанесения на металлическую поверхность некоторого слоя напыления в условиях высокотемпературной плазменной среды в качестве формирующих покрытий используют не только порошковые составы. В зависимости от того, какими свойствами должна обладать обработанная поверхность, используют следующие особенности плазменной металлизации:

  1. Наплавление высокоуглеродистой или легированной проволокой под флюсом. Для восстановления поверхностей используют наплавку в установках стержневым или пластинчатым электродом.
  2. Наплавка по порошковому слою под флюсом используется для реставрации деталей с обширными деформациями по окружности с толщиной слоя более 2 мм.
  3. Установки для напыления пропускают в качестве плазмообразующих газов аргон, азот, водород, гелий либо их смеси. Необходимо обеспечить отсутствие кислорода, чтобы исключить окисление наплавляемых покрытий.

Наиболее часто этот вид обработки используют для восстановления различных деталей при ремонте автомобильных двигателей. Так, при помощи диффузной металлизации удается восстановить отверстия коренных опор в блоках цилиндров (распространенная поломка), устранить износ головок цилиндров, реставрировать поршни из алюминиевого сплава, коленчатые валы из высокопрочного чугуна, ролики, катки.

При использовании ионно-плазменного напыления значительно возрастает износостойкость сложных узлов оборудования, механизмов и установок. Диффузная металлизация – это эффективный метод реставрации изношенного и усталого металла, а также оптимальный процесс для задания металлическим поверхностям необходимых прочностных и эксплуатационных характеристик.